1.6: Rational Expressions (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    106323
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    Preview Video for Section 1.6.

    Learning Objectives

    In this section students will:

    • Simplify rational expressions.
    • Multiply rational expressions.
    • Divide rational expressions.
    • Add and subtract rational expressions.
    • Simplify complex rational expressions.

    A pastry shop has fixed costs of \($280\) per week and variable costs of \($9\) per box of pastries. The shop’s costs per week in terms of \(x\), the number of boxes made, is \(280 +9x\). We can divide the costs per week by the number of boxes made to determine the cost per box of pastries.

    \[\dfrac{280+9x}{x} \nonumber \]

    Notice that the result is a polynomial expression divided by a second polynomial expression. In this section, we will explore quotients of polynomial expressions.

    Simplifying Rational Expressions

    The quotient of two polynomial expressions is called a rational expression. We can apply the properties of fractions to rational expressions, such as simplifying the expressions by canceling common factors from the numerator and the denominator. To do this, we first need to factor both the numerator and denominator. Let’s start with the rational expression shown.

    \[\dfrac{x^2+8x+16}{x^2+11x+28} \nonumber \]

    We can factor the numerator and denominator to rewrite the expression.

    \[\dfrac{{(x+4)}^2}{(x+4)(x+7)} \nonumber \]

    Then we can simplify that expression by canceling the common factor \((x+4)\).

    \[\dfrac{x+4}{x+7} \nonumber \]

    Howto: Given a rational expression, simplify it
    1. Factor the numerator and denominator.
    2. Cancel any common factors.
    Example \(\PageIndex{1}\): Simplifying Rational Expressions

    Simplify \(\dfrac{x^2-9}{x^2+4x+3}\)

    Solution

    \[\begin{align*} &\dfrac{(x+3)(x-3)}{(x+3)(x+1)} && \text{Factor the numerator and the denominator}\\ &\dfrac{x-3}{x+1} && \text{Cancel common factor } (x+3) \end{align*}\]

    Analysis

    We can cancel the common factor because any expression divided by itself is equal to \(1\).

    Q&A

    Can the \(x^2\) term be cancelled in the last example?

    No. A factor is an expression that is multiplied by another expression. The \(x^2\) term is not a factor of the numerator or the denominator.

    Exercise \(\PageIndex{1}\)

    Simplify \(\dfrac{x-6}{x^2-36}\)

    Answer

    \(\dfrac{1}{x+6}\)

    Multiplying Rational Expressions

    Multiplication of rational expressions works the same way as multiplication of any other fractions. We multiply the numerators to find the numerator of the product, and then multiply the denominators to find the denominator of the product. Before multiplying, it is helpful to factor the numerators and denominators just as we did when simplifying rational expressions. We are often able to simplify the product of rational expressions.

    Howto: Given two rational expressions, multiply them
    1. Factor the numerator and denominator.
    2. Multiply the numerators.
    3. Multiply the denominators.
    4. Simplify.
    Example \(\PageIndex{2}\): Multiplying Rational Expressions

    Multiply the rational expressions and show the product in simplest form:

    \(\dfrac{(x+5)(x-1)}{3(x+6)}\times\dfrac{(2x-1)}{(x+5)}\)

    Solution

    \[\begin{align*} &\dfrac{(x+5)(x-1)}{3(x+6)}\times\dfrac{(2x-1)}{(x+5)} && \text{Factor the numerator and denominator.}\\[4pt] &\dfrac{(x+5)(x-1)(2x-1)}{3(x+6)(x+5)} && \text{Multiply numerators and denominators}\\[4pt] &\dfrac{(x-1)(2x-1)}{3(x+6)} && \text{Cancel common factors to simplify} \end{align*}\]

    Exercise \(\PageIndex{2}\)

    Multiply the rational expressions and show the product in simplest form:

    \(\dfrac{x^2+11x+30}{x^2+5x+6}\times\dfrac{x^2+7x+12}{x^2+8x+16}\)

    Answer

    \(\dfrac{(x+5)(x+6)}{(x+2)(x+4)}\)

    Dividing Rational Expressions

    Division of rational expressions works the same way as division of other fractions. To divide a rational expression by another rational expression, multiply the first expression by the reciprocal of the second. Using this approach, we would rewrite \(\dfrac{1}{x}÷\dfrac{x^2}{3}\) as the product \(\dfrac{1}{x}⋅\dfrac{3}{x^2}\). Once the division expression has been rewritten as a multiplication expression, we can multiply as we did before.

    \[\dfrac{1}{x}⋅\dfrac{3}{x^2}=\dfrac{3}{x^3} \nonumber \]

    Howto: Given two rational expressions, divide them
    1. Rewrite as the first rational expression multiplied by the reciprocal of the second.
    2. Factor the numerators and denominators.
    3. Multiply the numerators.
    4. Multiply the denominators.
    5. Simplify.
    Example \(\PageIndex{3}\): Dividing Rational Expressions

    Divide the rational expressions and express the quotient in simplest form:

    \(\dfrac{2x^2+x-6}{x^2-1}÷\dfrac{x^2-4}{x^2+2x+1}\)

    Solution

    \[\begin{align*} &\dfrac{2x^2+x-6}{x^2-1}÷\dfrac{x^2-4}{x^2+2x+1} \\[4pt]
    &\dfrac{2x^2+x-6}{x^2-1}\times\dfrac{x^2+2x+1}{x^2-4} && \text{Rewrite as a multiplication problem} \\[4pt]
    &\dfrac{(2x-3)(x+2)}{(x-1)(x+1)}\times\dfrac{(x+1)(x+1)}{(x-2)(x+2)} && \text{Factor the numerator and denominator.}\\[6pt]
    &\dfrac{(2x-3)(x+2)(x+1)(x+1)}{(x-1)(x+1)(x-2)(x+2)} && \text{Multiply numerators and denominators}\\[6pt]
    &\dfrac{(2x-3)(x+1)}{(x-1)(x-2)} && \text{Cancel common factors to simplify} \end{align*}\]

    Exercise \(\PageIndex{3}\)

    Divide the rational expressions and express the quotient in simplest form:

    \[\dfrac{9x^2-16}{3x^2+17x-28}÷\dfrac{3x^2-2x-8}{x^2+5x-14} \nonumber \]

    Answer

    \(0\)

    Adding and Subtracting Rational Expressions

    Adding and subtracting rational expressions works just like adding and subtracting numerical fractions. To add fractions, we need to find a common denominator. Let’s look at an example of fraction addition.

    \[\begin{align*} \dfrac{5}{24}+\dfrac{1}{40} &= \dfrac{25}{120}+\dfrac{3}{120}\\ &= \dfrac{28}{120}\\ &= \dfrac{7}{30} \end{align*}\]

    We have to rewrite the fractions so they share a common denominator before we are able to add. We must do the same thing when adding or subtracting rational expressions.

    The easiest common denominator to use will be the least common denominator, or LCD. The LCD is the smallest multiple that the denominators have in common. To find the LCD of two rational expressions, we factor the expressions and multiply all of the distinct factors. For instance, if the factored denominators were \((x+3)(x+4)\) and \((x+4)(x+5)\), then the LCD would be \((x+3)(x+4)(x+5)\).

    Once we find the LCD, we need to multiply each expression by the form of \(1\) that will change the denominator to the LCD. We would need to multiply the expression with a denominator of \((x+3)(x+4)\) by \(\dfrac{x+5}{x+5}\) and the expression with a denominator of \((x+4)(x+5)\) by \(\dfrac{x+3}{x+3}\).

    Howto: Given two rational expressions, add or subtract them
    1. Factor the numerator and denominator.
    2. Find the LCD of the expressions.
    3. Multiply the expressions by a form of 1 that changes the denominators to the LCD.
    4. Add or subtract the numerators.
    5. Simplify.
    Example \(\PageIndex{4}\): Adding Rational Expressions

    Add the rational expressions: \[\dfrac{5}{x}+\dfrac{6}{y} \nonumber \]

    Solution

    First, we have to find the LCD. In this case, the LCD will be \(xy\). We then multiply each expression by the appropriate form of \(1\) to obtain \(xy\) as the denominator for each fraction.

    \[\begin{align*} &\dfrac{5}{x}\times\dfrac{y}{y}+\dfrac{6}{y}\times\dfrac{x}{x}\\ &\dfrac{5y}{xy}+\dfrac{6x}{xy} \end{align*}\]

    Now that the expressions have the same denominator, we simply add the numerators to find the sum.

    \[\dfrac{6x+5y}{xy} \nonumber \]

    Analysis

    Multiplying by \(\dfrac{y}{y}\) or \(\dfrac{x}{x}\) does not change the value of the original expression because any number divided by itself is \(1\), and multiplying an expression by \(1\) gives the original expression.

    Example \(\PageIndex{5}\): Subtracting Rational Expressions

    Subtract the rational expressions: \[\dfrac{6}{x^2+4x+4}-\dfrac{2}{x^2-4}\]

    Solution

    \[\begin{align*}
    &\dfrac{6}{{(x+2)}^2}-\dfrac{2}{(x+2)(x-2)} && \text{Factor}\\
    &\dfrac{6}{{(x+2)}^2}\times\dfrac{x-2}{x-2}-\dfrac{2}{(x+2)(x-2)}\times\dfrac{x+2}{x+2} && \text{Multiply each fraction to get LCD as denominator}\\
    &\dfrac{6(x-2)}{{(x+2)}^2(x-2)}-\dfrac{2(x+2)}{{(x+2)}^2(x-2)} && \text{Multiply}\\
    &\dfrac{6x-12-(2x+4)}{{(x+2)}^2(x-2)} && \text{Apply distributive property}\\
    &\dfrac{4x-16}{{(x+2)}^2(x-2)} && \text{Subtract}\\
    &\dfrac{4(x-4)}{{(x+2)}^2(x-2)} && \text{Simplify}
    \end{align*}\]

    Q&A

    Do we have to use the LCD to add or subtract rational expressions?

    No. Any common denominator will work, but it is easiest to use the LCD.

    Exercise \(\PageIndex{4}\)

    Subtract the rational expressions: \(\dfrac{3}{x+5}-\dfrac{1}{x-3}\)

    Answer

    \(\dfrac{2(x-7)}{(x+5)(x-3)}\)

    Simplifying Complex Rational Expressions

    A complex rational expression is a rational expression that contains additional rational expressions in the numerator, the denominator, or both. We can simplify complex rational expressions by rewriting the numerator and denominator as single rational expressions and dividing. The complex rational expression \(\dfrac{a}{\dfrac{1}{b}+c}\) can be simplified by rewriting the numerator as the fraction \(\dfrac{a}{1}\) and combining the expressions in the denominator as \(\dfrac{1+bc}{b}\). We can then rewrite the expression as a multiplication problem using the reciprocal of the denominator. We get \(\dfrac{a}{1}⋅\dfrac{b}{1+bc}\), which is equal to \(\dfrac{ab}{1+bc}\).

    Howto: Given a complex rational expression, simplify it
    1. Combine the expressions in the numerator into a single rational expression by adding or subtracting.
    2. Combine the expressions in the denominator into a single rational expression by adding or subtracting.
    3. Rewrite as the numerator divided by the denominator.
    4. Rewrite as multiplication.
    5. Multiply.
    6. Simplify.
    Example \(\PageIndex{6}\): Simplifying Complex Rational Expressions

    Simplify: \(\dfrac{y+\dfrac{1}{x}}{\dfrac{x}{y}}\)

    Solution

    Begin by combining the expressions in the numerator into one expression.

    \[\begin{align*} &y\times\dfrac{x}{x}+\dfrac{1}{x}\qquad \text{Multiply by } \dfrac{x}{x} \text{ to get LCD as denominator}\\ &\dfrac{xy}{x}+\dfrac{1}{x}\\ &\dfrac{xy+1}{x}\qquad \text{Add numerators} \end{align*}\]

    Now the numerator is a single rational expression and the denominator is a single rational expression.

    \[\begin{align*} &\dfrac{\dfrac{xy+1}{x}}{\dfrac{x}{y}}\\ \text{We can rewrite this as division, and then multiplication.}\\ &\dfrac{xy+1}{x}÷\dfrac{x}{y}\\ &\dfrac{xy+1}{x}\times\dfrac{y}{x}\qquad \text{Rewrite as multiplication}\\ &\dfrac{y(xy+1)}{x^2}\qquad \text{Multiply} \end{align*}\]

    Exercise \(\PageIndex{5}\)

    Simplify: \(\dfrac{\dfrac{x}{y}-\dfrac{y}{x}}{y}\)

    Answer

    \(\dfrac{x^2-y^2}{xy^2}\)

    Q&A

    Can a complex rational expression always be simplified?

    Yes. We can always rewrite a complex rational expression as a simplified rational expression.

    Media

    Access these online resources for additional instruction and practice with rational expressions.

    1. Simplify Rational Expressions

    2. Multiply and Divide Rational Expressions

    3. Add and Subtract Rational Expressions

    4. Simplify a Complex Fraction

    Key Concepts

    • Rational expressions can be simplified by cancelling common factors in the numerator and denominator. See Example.
    • We can multiply rational expressions by multiplying the numerators and multiplying the denominators. See Example.
    • To divide rational expressions, multiply by the reciprocal of the second expression. See Example.
    • Adding or subtracting rational expressions requires finding a common denominator. See Example and Example.
    • Complex rational expressions have fractions in the numerator or the denominator. These expressions can be simplified. See Example.

    Homework Exercises 1.6

    WeBWorK Problems:

    Written Problems:

    A simplified rational expression is a single fraction withno common factors. Simplify the following rational expressions.

    1. \(\frac{x^2-16}{x^2-5x+4}\)

    2.\(\frac{3y^2-7y-6}{2y^2-3y-9}\div{\frac{y^2+y-2}{2y^2+y-3}}\)

    3.\(\frac{t^2-1}{3t}\times{\frac{6}{t^2}}\)

    4.\(\frac{4}{x}+\frac{10}{y}\)

    5.\(\frac{12}{2q}-\frac{6}{3p}\)

    6.\(\frac{c+2}{3}-\frac{c-4}{4}\)

    7.\(\frac{\frac{2}{a}+\frac{7}{b}}{b}\)

    8.\(\frac{\frac{x}{4}-\frac{p}{8}}{p}\)

    9.\(\frac{x}{\frac{3}{x}-\frac{x}{7}}\)

    10.\(\frac{3x}{x+1}-\frac{2x+1}{x-2}\)

    1.6: Rational Expressions (2024)

    FAQs

    How do you write a rational expression? ›

    In a rational expression, both numerator and denominator are polynomials. i.e., it is of the form p(x)/q(x), where q(x) ≠ 0 and p(x) and q(x) are polynomials. Since rational expressions are nothing but fractions, we operate on them just the way we operate the fractions.

    Is 1/2 a rational expression? ›

    Answer and Explanation:

    The fraction 1/2 is a rational number. A rational number is one that can be expressed as a ratio or fraction between two integers.

    What are the rational expressions? ›

    A rational expression is the ratio of two polynomials.

    If f is a rational expression then f can be written in the form p/q where p and q are polynomials.

    How to identify a rational expression? ›

    A rational expression is simply a quotient of two polynomials. Or in other words, it is a fraction whose numerator and denominator are polynomials.

    What are 5 examples of rational equation? ›

    This is the 5 examples of rational equation:
    • 4/x + 5/2 = -11/x.
    • 5x/(x - 2) = 7 + 10/(x - 2)
    • ( 3x - 2)/(x - 2) = 6/(x2 - 4) + 1.
    • 2/(x2 - x) = 1/(x - 1)
    • 3/(x + 2) = 6/(x - 1)
    Nov 8, 2020

    How do I simplify a rational expression? ›

    Step 1: Factor the numerator and the denominator. Step 2: List restricted values. Step 3: Cancel common factors. Step 4: Reduce to lowest terms and note any restricted values not implied by the expression.

    How to solve a rational number? ›

    Rational Number - Multiplication and Division

    We multiply the numerators and denominators of any two rational integers independently before simplifying the resultant fraction. To divide any two fractions, multiply the first fraction (dividend) by the reciprocal of the second fraction (which is the divisor).

    How to add rational expressions? ›

    To add or subtract two rational expressions with the same denominator, we simply add or subtract the numerators and write the result over the common denominator. When the denominators are not the same, we must manipulate them so that they become the same.

    Is 1.5 a rational number? ›

    The number 1.5 is a rational number. It can be expressed as the fraction, 15/10. A rational number is one that can be expressed as a fraction made of two integers. Since 15 and 10 are both integers, or whole numbers, 15/10 and 1.5 are rational numbers.

    Is 1.25 a rational number? ›

    Answer and Explanation:

    1.25 is a rational number. A rational number is any number that can be written as a fraction. That is, it is a number that can be put in the form a/b, where a and b are integers.

    Is 3.14 a rational number? ›

    Answer and Explanation:

    The number 3.14 is a rational number. A rational number is a number that can be written as a fraction, a / b, where a and b are integers. The number pi is an irrational number.

    How do you solve a rational expression? ›

    When we have an equation where the variable is in the denominator of a quotient, that's a rational equation. We can solve it by multiplying both sides by the denominator, but we have to look out for extraneous solutions in the process.

    How to write a rational expression? ›

    To write a rational expression in lowest terms, we must first find all common factors (constants, variables, or polynomials) or the numerator and the denominator. Thus, we must factor the numerator and the denominator. Once the numerator and the denominator have been factored, cross out any common factors.

    How to identify a rational equation? ›

    A rational equation is an equation that contains fractions with xs in the numerator, denominator or both. Here is an example of a rational equation: (4 / (x + 1)) - (3 / (x - 1)) = -2 / (x^2 - 1).

    How do you write in rational form? ›

    Rational numbers are those that can be represented in the form p/q, where p and q are integers and q is not equal to zero. As a result, if 4/6 is a rational number, its standard form will be 2/3, because we can no longer solve 2/3.

    What is an example of a proper rational expression? ›

    A proper rational expression has a lower-degree numerator than denominator ( e . g . , 1 − x / x 2 + 3 ) , and an improper one has a higher-degree numerator than denominator ( e . g . , x 2 + 3 / 1 − x ) . The latter can be simplified using polynomial long division.

    How is a rational function written? ›

    A rational function is a function that looks like a fraction where both the numerator and denominator are polynomials. It looks like f(x) = p(x) / q(x), where both p(x) and q(x) are polynomials.

    Top Articles
    Latest Posts
    Article information

    Author: Msgr. Benton Quitzon

    Last Updated:

    Views: 5351

    Rating: 4.2 / 5 (63 voted)

    Reviews: 94% of readers found this page helpful

    Author information

    Name: Msgr. Benton Quitzon

    Birthday: 2001-08-13

    Address: 96487 Kris Cliff, Teresiafurt, WI 95201

    Phone: +9418513585781

    Job: Senior Designer

    Hobby: Calligraphy, Rowing, Vacation, Geocaching, Web surfing, Electronics, Electronics

    Introduction: My name is Msgr. Benton Quitzon, I am a comfortable, charming, thankful, happy, adventurous, handsome, precious person who loves writing and wants to share my knowledge and understanding with you.